The German doctor Robert
Koch is considered the founder of modern bacteriology. His discoveries made a
significant contribution to the development of the first ‘magic bullets’ - chemicals developed to
attack specific bacteria - and Koch was awarded a Nobel Prize in 1905.
Koch developed a new experimental method to test whether a particular microorganism
is the cause of a disease. Building on Pasteur's work on germ theory, Koch used experiments to prove
that the bacterium Bacillus
anthracis was the cause of anthrax - the bacterium could be observed in the
tissue of anthrax victims. He extracted this bacterium from a sheep which had
died of anthrax, grew it and injected a mouse with it. The mouse developed the
disease as well. Koch repeated this process over 20 generations of mice, before
he announced in 1876 that he had proved this bacterium caused anthrax.
Koch continued to improve
his methods and techniques. By solidifying liquids such as broth with gelatine
and agar, for instance, he created a solid medium for growing bacteria which
was easier to handle than the liquids used by Pasteur. Koch's assistant Julius
Richard Petri (1852-1921) developed the Petri dish,
which made the observation of bacteria even easier.
Koch and his team also
developed ways of staining bacteria to improve the bacteria’s
visibility under the microscope, and were able to identify the
bacterial causes of tuberculosis (1882) and cholera (1883). Adopting Koch's method,
other researchers were able to identify the bacteria that caused diseases such
as typhus
(1880), tetanus
(1884) and the plague
(1894).
Robert KochGerman bacteriologist
Written By:
Robert Koch,
in full Robert Heinrich
Hermann Koch, (born Dec. 11, 1843, Clausthal, Hannover [now
Clausthal-Zellerfeld, Ger.]—died May 27, 1910, Baden-Baden, Ger.), German physician and
one of the founders of bacteriology. He discovered the anthrax disease
cycle (1876) and the bacteria responsible for tuberculosis
(1882) and cholera (1883). For his discoveries in
regard to tuberculosis, he received the Nobel
Prize for Physiology or Medicine in 1905.
Early
training
Koch attended the University of Göttingen, where he studied medicine,
graduating in 1866. He then became a physician in various provincial towns.
After serving briefly as a field surgeon during the Franco-Prussian War of 1870–71, he became
district surgeon in Wollstein, where he built a small laboratory. Equipped with
a microscope, a microtome (an instrument for cutting thin slices of tissue),
and a homemade incubator, he began his study of algae, switching later to
pathogenic (disease-causing) organisms.
Anthrax research
One of Koch’s teachers at Göttingen had been the
anatomist and histologist Friedrich Gustav Jacob Henle,
who in 1840 had published the theory that infectious diseases are caused by
living microscopic organisms. In 1850 the French parasitologist Casimir Joseph Davaine
was among the first to observe organisms in the blood of diseased animals. In
1863 he reported the transmission of anthrax by the inoculation of healthy
sheep with the blood of animals dying of the disease and the finding of
microscopic rod-shaped bodies in the blood of both groups of sheep. Inspired by
the work of the French microbiologist Louis Pasteur, Davaine showed that it was
highly probable that, because the sheep did not become diseased in the absence
of these rodlike bodies, anthrax was due to the presence of such organisms in
the blood. The natural history of the disease was, nevertheless, far from
complete.It was at that point that Koch began. He cultivated the anthrax organisms in suitable media on microscope slides, demonstrated their growth into long filaments, and discovered the formation within them of oval, translucent bodies—dormant spores. Koch found that the dried spores could remain viable for years, even under exposed conditions. The finding explained the recurrence of the disease in pastures long unused for grazing, for the dormant spores could, under the right conditions, develop into the rod-shaped bacteria (bacilli) that cause anthrax. The anthrax life cycle, which Koch had discovered, was announced and illustrated at Breslau in 1876, on the invitation of Ferdinand Cohn, an eminent botanist. Julius Cohnheim, a famous pathologist, was deeply impressed by Koch’s presentation. “It leaves nothing more to be proved,” he said.
Facts Matter. Support the truth
and unlock all of Britannica’s content. Start Your Free Trial Today
I regard it as the greatest
discovery ever made with bacteria and I believe that this is not the last time
that this young Robert Koch will surprise and shame us by the brilliance of his
investigations.Cohn, whose discovery of spores had been published in 1875, was also very much impressed and generously helped to prepare the engraving for Koch’s epochal paper, which he also published. One of Cohn’s pupils, Joseph Schroeter, found that chromogenic (colour-forming) bacteria would grow on such solid substrates as potato, coagulated egg white, meat, and bread and that those colonies were capable of forming new colonies of the same colour, consisting of organisms of the same type. That was the starting point of Koch’s pure-culture techniques, which he worked out a few years later. That a disease organism might be cultured outside the body was a concept introduced by Louis Pasteur, but the pure-culture techniques for doing so were perfected by Koch, whose precise and ingenious experiments demonstrated the complete life cycle of an important organism. The anthrax work afforded for the first time convincing proof of the definite causal relation of a particular microorganism to a particular disease.
Contributions
to general bacteriology and pathology
In 1877 Koch published an important paper on the
investigation, preservation, and photographing of bacteria. His work was
illustrated by superb photomicrographs. In his paper he described his method of
preparing thin layers of bacteria on glass slides and fixing them by gentle
heat. Koch also invented the apparatus and the procedure for the very useful
hanging-drop technique, whereby microorganisms could be cultured in a drop of
nutrient solution on the underside of a glass slide.In 1878 Koch summarized his experiments on the etiology of wound infection. By inoculating animals with material from various sources, he produced six types of infection, each caused by a specific microorganism. He then transferred these infections by inoculation through several kinds of animals, reproducing the original six types. In that study, he observed differences in pathogenicity for different species of hosts and demonstrated that the animal body is an excellent apparatus for the cultivation of bacteria.
Koch, now recognized as a scientific investigator of the first rank, obtained a position in Berlin in the Imperial Health Office, where he set up a laboratory in bacteriology. With his collaborators, he devised new research methods to isolate pathogenic bacteria. Koch determined guidelines to prove that a disease is caused by a specific organism. These four basic criteria, called Koch’s postulates, are:
- A specific microorganism is always associated with a given disease.
- The microorganism can be isolated from the diseased animal and grown in pure culture in the laboratory.
- The cultured microbe will cause disease when transferred to a healthy animal.
- The same type of microorganism can be isolated from the newly infected animal.
Studies
of tuberculosis and
cholera
Koch concentrated his efforts on the study of
tuberculosis, with the aim of isolating its cause. Although it was suspected
that tuberculosis was caused by an infectious agent, the organism had not yet
been isolated and identified. By modifying the method of staining, Koch
discovered the tubercle bacillus
and established its presence in the tissues of animals and humans suffering from
the disease. A fresh difficulty arose when for some time it proved impossible
to grow the organism in pure culture. But eventually
Koch succeeded in isolating the organism in a succession of media and induced
tuberculosis in animals by inoculating them with it. Its etiologic role was
thereby established. On March 24, 1882, Koch announced before the Physiological
Society of Berlin that he had isolated and grown the tubercle bacillus, which
he believed to be the cause of all forms of tuberculosis.Meanwhile, Koch’s work was interrupted by an outbreak of cholera in Egypt and the danger of its transmission to Europe. As a member of a German government commission, Koch went to Egypt to investigate the disease. Although he soon had reason to suspect a particular comma-shaped bacterium (vibrio) as the cause of cholera, the epidemic ended before he was able to confirm his hypothesis. Nevertheless, he raised awareness of amebic dysentery and differentiated two varieties of Egyptian conjunctivitis. Proceeding to India, where cholera is endemic, he completed his task, identifying both the organism responsible for the disease and its transmission via drinking water, food, and clothing.
Resuming his studies of tuberculosis, Koch investigated the effect an injection of dead bacilli had on a person who subsequently received a dose of living bacteria and concluded that he may have discovered a cure for the disease. In his studies he used as the active agent a sterile liquid produced from cultures of the bacillus. However, the liquid, which he named tuberculin (1890), proved disappointing, and sometimes dangerous, as a curative agent. Consequently, its importance as a means of detecting a present or past tubercular state was not immediately recognized (see tuberculin test). Additional work on tuberculosis came later, but, after the seeming debacle of tuberculin, Koch was also occupied with a great variety of investigations into diseases of humans and animals—studies of leprosy, bubonic plague, livestock diseases, and malaria.
In 1901 Koch reported work done on the pathogenicity of the human tubercle bacillus in domestic animals. He believed that infection of human beings by bovine tuberculosis is so rare that it is not necessary to take any measures against it. That conclusion was rejected by commissions of inquiry in Europe and America but extensive and important work was stimulated by Koch. As a result, successful measures of prophylaxis were devised.
Historical
assessment
Not an eloquent speaker, Koch
was nevertheless by example, demonstration, and precept one of the most
effective of teachers, and his numerous pupils—from the entire Western world
and Asia—were the creators of the new era of bacteriology. His work on
trypanosomes was of direct use to the eminent German bacteriologist Paul
Ehrlich; that is only one example of Koch’s instigation of epochal work both
within and beyond his own immediate sphere. His discoveries and his technical innovations
were matched by his fundamental concepts of the etiology of disease. Long
before his death, his place in the history of science was universally
recognized.With affection,
Ruben
No comments:
Post a Comment